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Abstract — New analytical closed forms of the disper-
sion relation for TLM condensed nodes modelling general
materials (stubbed symmetrical condensed node, symmet-
rical super-condensed node) are presented and validated by
numerical results. The range of dispersion errors and bi-
lateral behavior are fully explored and practical gunidance
is offered to users.

1 INTRODUCTION

This paper addresses the modelling of electromagnetic
phenomena in materials with arbitrary e,, ., using
the TLM method with condensed nodes on a uni-
form mesh of node spacing d. This modelling may be
achieved either by introducing open- and short-circuit
stubs to the conventional symmetrical condensed node
(SCN) [1], or by altering the characteristic impedances
of the transmission-lines as established in the symmet-
rical super-condensed node (SSCN) [2].

It was shown in {2] that the SSCN requires less com-
puter resources than the conventional stubbed SCN [1].
However, the dispersion characteristics must also be
taken into account when selecting one of the two
nodes for electromagnetic simulation. Dispersion in
the stubbed SCN, based on numerical solutions of the
general dispersion relation for TLM nodes [3], was in-
vestigated in [4], while here we obtain new closed-form
analytical dispersion formulae and confirm their va-
lidity by results from our own simulations and from
numerical solutions presented in [4]. We also validate
the closed-form dispersion relation for the SSCN [5]
and compare the dispersion characteristics of the two
nodes (stubbed SCN and SSCN) in detail.

2 DISPERSION IN STUBBED SCN

The full dispersion analysis of the stubbed SCN (with

six stubs) requires solution of an eigenvalue problem
of 18th order [4] in terms of 7 = exp (jkod), where
ko is the TLM mesh propagation constant. Taking
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into account that two of the eigenvalues are constants
representing non-propagating solutions (n = 1) [6] and
that eigenvalues representing propagating solutions are
found to be in reciprocal pairs (1, n71), the dispersion
relation in general form can be written as an 8th-order
polynomial in cos(kod).

An exact closed-form solution of a general 8th order
polynomial does not exist, therefore eigenvalues cannot
be expressed in closed-form. However, the above men-
tioned dispersion relation is a polynomial of second or-
der in cos(k.d), cos(kyd) or cos(k.d), which allows its
solution for a particular mode of propagation given by
ks, ky, k,, the cartesian components of the plane-wave
propagation constant.

We have restricted our analysis here to cases when

Casel: e, > 1, pip=1lorp,>1,6, =1
Case 2: & =y
and for the following propagation directions:
a) Propagation along a coordinate plane, e.g. z = 0.
b) Propagation along a diagonal plane, e.g. z = y.
which contain most propagation modes of practical in~
terest.

2.1 Casel

The SCN for Case 1 is augmented by only three stubs
(either open- or short-circuited), so that the size of ma-
trices involved in the eigenvalue problem [4] is of 15th
order. By eliminating solutions = %1 and grouping
reciprocal eigenvalues, the dispersion relation can be
expressed as a polynomial of 5th degree in cos(kod).
A closed-form solution for cos(kod) cannot be found
from the 5th order polynomial in general. However,
the polynomial is of second order in cos(k,d), cos(kyd)
or cos(k,d), which allows exact closed-form dispersion
relations for particular modes of propagation.

The dispersion relation for Case 1 is presented here
for subcases a, b in which the 5th degree polynomial
splits into two parts, a quadratic and a cubic polyno-
mial in cos(kod) and can be solved analytically. Two
dispersion relations are obtained when e,#p,, corre-

1995 IEEE MTT-S Digest

WE
18



sponding to different wave polarizations [4].

For Case la, assuming propagation in the z = 0
plane, the following SCN dispersion relations are ob-
tained [4, 5]

(cos 8 — psin® ic—)(cosa — psin® El_) —cos? Zcos? L =0 1)
2 2 2 2
. 2% . 2Y 2% 2Y
[(cos 6 — psin 5)(cos 6 — psin 2) cos”  cos 2}

g sin®
where § = kod, z = kpd, y = kyd, z = k.d.

When ¢, > 1and g, = 1, p=1-1/¢, and equa-
tions (1) and (2) represent solutions for H,FE,Ey, and
E,H_H, propagation modes, respectively. Dual equiv-
alents of equations (1) and (2) for the case &, = 1,
f#r > 1 hold withp=1-—1/p,.

For Case 1b, with k, = ky, the dispersion relations
obtained are:

(cos @ + 1) — psin® %[(P—Z)cosﬂ+p]=0 (2)

cos 20 +aycos@ 4+ az =0
cos 30 4 by cos 20 + by cos @ + b3 =0

(3)
4)

where coefficients ay, as, by, b, bs are given by:

a3 = p(cosz 4 cosz — 2)

ap = %(p-— 1)(cos®s +2cos s cosz — 1) — a1 — p

b1 =p(3cosz +cosz—4)+2

bo = (2p— 1)(p+1)cos’ z 4+ 2(p° +p—1)coszcos z
——2p2(3c0s:c + cos z) +4p> —3p+2

bs = [3p (p — 1) cos z — 3p* + 2p — 1] cos’ & + p*(cos z — 1)
—[2(2p® — 2p + 1) cosz — p(4p — 1)]cos s — 2p + 1

Figures la,b show the dispersion in the stubbed
SCN for Cases 1a,b respectively. Directions [100], {010]
and [001] are given in Figure 1a for & = 90°, @ = 0°
and in Figure 1b for # = 0°, respectively. Direction
[110] is given in Figure la for @ = 45° and in Fig-
ure 1b for B = 90°, direction [111] is given in Figure 1b
for f = 45°, direction [120] is given in Figure la for
a = arctan(1/2) ~ 26.5°, direction [112] is given in
Figure 1b for f = arctan(1/2) ~ 26.5° etc.

The upper and lower sets of curves in Figure la
correspond to equations (1) and (2), respectively. The
upper and lower sets of curves in Figure 1b (as seen in
the right-hand half of the plot) correspond to equa-
tions (3) and (4). In all cases the propagation er-
ror is calculated for d/A = 0.1, where X is the wave-
length. The medium propagation constant is given by
km = 2ko/Erfir, while |k| = (k2 + k2 + k2)1/2,

Both parts of Figure 1 show the bilateral nature of
the dispersion mentioned in [4], i.e. the coexistence of
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positive and negative propagation errors. They show
that dispersion curves at a given frequency converge as
& — 00 Or g, — oo and that the maximum positive
propagation error occurs for the direction [110], i.e. for
the propagation on the diagonal in a coordinate plane,
whereas the maximurm negative error occurs for axial
propagation. Two set of curves representing the or-
thogonal solutions (1) and (2) converge for axial prop-
agation (Figure 1a). Similarly, solutions (3) and (4)
converge for both axial propagation and propagation
along the main space diagonal (Figure 1b). Note from
Figures la,b that the relative propagation error cor-
responding to solutions (1) and (4) for the propagat-
ing directions [120], [210] and [112], [111], respectively,
is practically independent of the material properties

Ery tr.

2.2 Case 2

The 8th-order polynomial in cos(kqd), representing the
general dispersion relation for the stubbed SCN, splits
in Case 2 (e,=p,) into two identical parts which are
themselves 4-th order polynomials in cos(kod), and lin-
ear in cos(k,d), cos(kyd) or cos(k,d). This means that
for Case 2 there exists only one dispersion curve which
confirms numerical results in [4].
The dispersion relation in Case 2 is:

cos 46 + ay cos 36 4+ agcos 20 + agcosf +as =0 (5)
where coefficients a; ... a4 are given by:

a1 =2p(S1 —3)+4
az=4p(1~2p) Si 4+ (B3p = 1)(p+1)S2 + 15p° — 18p + 7
as = 2p°(5p — 2) S1 — 2(3p° + 4p* —5p 4+ 2) S,
+2p (p* + 6p — 3) S5 — 2(Tp* — 12p° + 12p — 4)
as=—2p(3p° —2p+1)S1 + (2° ~p+1)(5p— 3) S»
~2p (Tp® — 6p+3) Ss +2p° + 9p° — 12p +4

with
p =1-1fer = 1—1/ps
S1 = cosz +cosy 4 cos z
Sy = COS £ COS ¥ 4 COS Y COS Z -+ COS 2 COS T
S§3 = COS T COBYCOs 2

Figures 2a,b show the dispersion in the stubbed
SCN for Cases 2a,b, respectively. They show that the
propagation error is significantly bigger than for Cases
la,b, and that the highest dispersion occurs for ax-
ial propagation. The dispersion curves at a given fre-
quency converge when &, i, — co but at a slower rate
than in Case 1. The propagation error is bilateral for
smaller €, 4, and negative for larger e, .



3 DISPERSION IN SSCN

A general dispersion relation for the SSCN for all prop-
agation modes has been obtained as [5]:

4epptp 5in? § = 3 — cos & COS Y — COS Y COS 2 — COS 7 COS T
(6)
Figures 3a,b show the dispersion characteristics
for the SSCN. They show that the propagation error
is always positive (i.e. unilateral), it converges when
Erppy — 00, it is independent of the ratio ¢,/u, for
€ pty = const and of the mode of propagation. The
highest dispersion occurs on the main space diagonal.
The dispersion curves for different ¢, p, are practically
equidistant which means that the range of dispersion
error for given &, 4., as defined in [4], is constant.

4 VALIDATION

The analytical expressions presented here have been
validated by numerical results from [4] and with our
simulated results of the eigenvalue analysis of cubic
resonators, using the simulation procedure similar to
that of [4]. Note that in [4] the relative frequency error
was calculated while here we calculate relative propa-
gation error which has the opposite sign.

Numerical results are marked with diamond sym-
bols and plotted in Figures 1-3a for the directions
[010], [120], [110], [210], [100] and in Figures 1-3b for
the directions [001], [112], [111], {110]. They are found
to be in good agreement with the analytical plots, es-
pecially for propagation errors smaller than 1%.

Spurious propagating solutions detected in the SCN
for the propagation on the main space diagonal (3, 6],
are inherited in the stubbed SCN and the SSCN
schemes and can be derived from equations (3)—(6).
However they do not show significant impact on the
results obtained from the simulations.

5 DISCUSSION AND CONCLUSIONS

Comparisons of the dispersion range of the stubbed
SCN and the SSCN for different cases, can be done us-
ing the plots of Figures 1-3. For Case 1, the total range
of the propagation error, assuming all propagation an-
gles and solutions for 1 < .4, < 00, is higher in the
SSCN than in the stubbed SCN. However, the unique
and unilateral dispersion characteristics observed for
the SSCN and its constant dispersion range are poten-
tially easier to correct, in contrast to the existence of
two solutions and the bilateral dispersion detected in
the stubbed SCN. For Case 2, the total range of dis-
persion in the SSCN is smaller compared to the SCN.
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Figure 1: Stubbed SCN: Relative propagation errors
for different &, (pr = 1)

a) in the coordinate plane given by z =0

b) in the diagonal plane given by z = y

The choice of the TLM condensed node scheme for
an actual simulation depends on the practical require-
ments. For example, when modelling dielectric mate-
rials (Case 1, g, = 1), the three extra memory loca-
tions required in the stubbed SCN and the more time-
consuming scattering procedure are justified by achiev-
ing more accurate results. In general cases (e, i, > 1)
when the SCN contains six stubs, it requires 50% more
storage and approx. 20% more CPU time than the
SSCN and, with dispersion characteristics similar to
ones in Case 2, is less accurate for high ¢,, y.. In this
case the SSCN is more efficient. '
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Figure 2: Stubbed SCN: Relative propagation errors
for different e, pr (e = pr)

a) in the coordinate plane given by 2 =0

b) in the diagonal plane given by z = y
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